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The slip-slide method of factoring first came 
to my attention in the late 1980s when I was 
tutoring a student who was taking Algebra 1 

as a seventh grader. George was working on factor-
ing quadratic trinomials and shared with me the 
unusual technique that he had learned at school. 
He showed me this example:

6x2 + 5x – 4
x2 + 5x – 24

(x + 8)(x – 3)
(x + 8/6)(x –3/6)
(x + 4/3)(x –1/2)
(3x + 4)(2x – 1)

George demonstrated the method to me several 
times with other quadratic trinomials, and each 
time the method produced the correct pair of fac-
tors. I was stunned.

I was fascinated by the method and, at the same 
time, puzzled. I could find no counterexample to 
show that the method did not always work, but I 
was unable to demonstrate mathematically that the 
method would always work. This bothered me. As a 
teacher, I was proud of the fact that I always made 

sure that my students knew why a method or pro-
cedure worked, yet now I had a method that I, the 
teacher, could not explain.

Before reading further, you may wish to con-
sider the steps shown above and see if you can 
make sense of what is going on. 

WHAT IS THE SLIP-SLIDE METHOD?
For readers who are not familiar with the slip-slide 
method of factoring quadratic trinomials, let’s take 
a closer look at the example 6x2 + 5x – 4. Tradition-
ally, the approach to factoring has been to use trial 
and error and consider all the possible pairs of linear 
binomials that could be created until one was found 
that produced the correct middle term. In this case, 
the leading term 6x2 has two possible factor pairs: 
(6x)(x) and (3x)(2x). The constant –4 has three 
pairs of factors: (–4)(1), (4)( –1), and (2)( –2). For 
this example, then, the possible pairs of binomial fac-
tors would include those found in table 1.

The existence of common factors in some of the 
potential binomial factors would allow you to elimi-
nate many of these without having to determine 
their middle terms. Even so, the process is tedious, 
particularly with trinomials whose leading coefficient 
and constant have multiple factors. Once you found 
the pair of binomial factors that produced the correct 
middle term, you were done. Here, we find that the 
factors of 6x2 + 5x – 4 are (3x + 4) and (2x – 1). 

Slip-slide factoring eliminates the need to create 
a long list of potential factors or resort to trial and 
error. Instead, a predictable sequence of steps pro-
duces the correct factors of any nonprime quadratic 
trinomial with integer coefficients a, b, and c. If you 
were using the slip-slide method, you w ould follow 
the steps shown in table 2.

If you were seeing this for the first time, three 
steps in the process would likely bother you: steps 
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1, 3, and 5. In step 1, why would you multiply the 
leading coefficient and the constant of the original 
trinomial? The new trinomial that you create is not 
equivalent to the one that you started with. That 
bothered me. Next, in step 3, what gives you the 
right to arbitrarily divide each constant by the origi-
nal leading coefficient? Doing so changes the two 
binomial factors. That bothered me. Finally, after 
simplifying the fractions in step 4, why would you 
“slide” the denominators of the fractions and make 
them the coefficients of x in step 5? That really 
bothered me.

I could rationalize that steps 1 and 3 somehow 
made sense because multiplication and division 
were inverse operations. Multiplying by 6 and 
dividing by 6 in some way seemed okay, yet I 
could not find a mathematical way to justify those 

maneuvers. That issue aside, I was truly bewildered 
by step 5, in which we simply slide the denomina-
tors to the left, magically turning fractions into 
whole numbers and creating two linear binomials 
that were always the correct factors of the original 
quadratic trinomial.

This method of factoring reminds me of my 
introduction to finding square roots by hand, a 
method I learned from my father long before the 
arrival of handheld calculators. He showed me a 
tedious series of steps that enabled me to calculate 
square roots to any degree of precision, depending 
on my level of patience. I did not understand why 
the procedure worked, but it did, and I continue to 
amaze people today with my remarkable ability to 
extract square roots by hand.

Slip-slide factoring resembles finding square 
roots by hand—the method works, but why it 
works is unclear to most people, including teachers. 
Students can learn to mimic the procedure success-
fully, but they do so without understanding, a situ-
ation I find untenable.

The authors of Adding It Up (NRC 2001) discuss 
at length the five strands of mathematical profi-
ciency, two of which are procedural competence and 
conceptual understanding. Procedural competence 
focuses on the ability to perform procedures cor-
rectly to arrive at the desired result, similar to the 
manner in which one might extract a square root 
by hand. Conceptual understanding has to do with 
whether one understands why a procedure works—
for example, why can one simply “move” the deci-
mal point to the right or left when multiplying or 
dividing by a power of ten. Adding It Up makes the 
case that the acquisition of one strand of proficiency 
without the other is inadequate to ensure overall 
mathematical proficiency in our students. For stu-
dents to attain a high level of mathematical profi-
ciency, they must have procedural competence, but 
they must also possess conceptual understanding.

Table 1  Binomial Pairs Related to the  

Quadratic Trinomial 6x2
+ 5x – 4 

Factors Middle Term

(6x + 1)(x – 4) –23x

(6x – 4)(x + 1) 2x

(6x – 1)(x + 4) 23x

(6x + 4)(x – 1) –2x

(6x + 2)(x – 2) –10x

(6x – 2)(x + 2) 10x

(3x + 1)(2x – 4) –10x

(3x – 4)(2x + 1) –5x

(3x – 1)(2x + 4) 10x

(3x + 4)(2x – 1) 5x

(3x + 2)(2x – 2) –2x

(3x – 2)(2x + 2) 2x

Table 2  The Slip-Slide Method of Factoring

Step Objective: Factor the quadratic trinomial shown 6x2 
+ 5x – 4

1 Multiply the coefficient of x2 by the value of the constant term 
and let this be the new constant. Drop the coefficient of x2. 
(That is, replace the coefficient with 1.)

x2 + 5x – 24

2 Factor the new trinomial. (x + 8)(x – 3)

3 Divide the constant in each binomial factor by the original 
coefficient of x2.

(x + 8/6)(x – 3/6)

4 Simplify resulting fractions, if possible. (x + 4/3)(x – 1/2)

5 In each binomial factor, if the constant is a fraction, make the 
denominator of the fraction the coefficient of x and let the 
numerator be the new constant.

(3x + 4)(2x – 1)
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Whether the skill involves finding square roots 
by hand, multiplying by powers of ten, or factor-
ing quadratic trinomials, performing the procedure 
alone without an understanding of why the pro-
cedure is valid leaves students with an incomplete 
knowledge base from which to operate; their com-
petence in performing a particular procedure has 
no connection to prior knowledge. NCTM’s Con-
nections Standard (NCTM 2000, p. 64) suggests 
that since such “learning” may be temporary, all 
learning should be built on prior knowledge for it 
to have meaning.

As the years passed, I did teach this method 
of factoring to my students and gave them some 
feeble explanation about why it worked. Secretly, 
I knew that I was being unfair to my students and 
untrue to my own principles. Time and again, I 
would try to justify the slip-slide method to myself 
algebraically, and each time I would wind up frus-
trated and more discouraged. Periodically I would 
revisit the method, but the results were always the 
same.

A GRAPHICAL EPIPHANY
More than twenty years after first learning about 
the slip-slide method of factoring and after numer-

ous failed attempts to justify the method to my 
own satisfaction, I began to explore slip-sliding 
anew. This time, however, I approached the task 
from a different angle. Rather than considering 
only the algebraic approach, I decided to look at 
the task graphically. Tools such as a graphing cal-
culator and interactive geometry software enabled 
me to consider visual representations that had not 
been readily available two decades earlier. Today’s 
technology made the process effortless, accurate, 
and quick. It now seemed natural to investigate 
graphically, whereas decades ago this was not an 
option.

The slip-slide process began to make sense 
when I finally accepted the fact that the polyno-
mial produced in each step was not intended to be 
equivalent to the polynomial in the preceding step. 
The issue is not equality among polynomial expres-
sions; the issue is how each polynomial relates to 
the others. Instead of worrying about the fact that 
each expression was not mathematically equivalent 
to the others, I began to treat each polynomial as a 
polynomial function. I started to look at the graphi-
cal representations of the various polynomial func-
tions to see what effect each modification had on 
the graph of the preceding function. This approach 
allowed me to look at the process in an entirely 
new light and make connections between the char-
acteristics of polynomial functions and the factors 
of polynomial expressions.

This transition from polynomial expression to 
polynomial function is one that should not be taken 
lightly. We are moving from an expression in one 
variable to a functional relationship in the form 
of an equation in two variables. Although teach-
ers routinely move back and forth from one to the 
other, using them almost interchangeably, this 
transition is a major conceptual barrier for students 
who are just beginning to grasp the notion of func-
tion. We would serve our students well if we could 
do a better job of helping them appreciate the dif-
ferences and similarities between the two. (But that 
is a topic for another time.) 

I decided to examine the relationship between 
the graphs of the two associated quadratic func-
tions, f(x) = 6x2 + 5x – 4 and g(x) = x2 + 5x – 24, 
that appeared in the first two lines of the slip-slide 
example in table 2. I hoped to notice a relationship 
between the two functions that would shed light on 
why the slip-slide method works. 

FACTORS AND ZEROS
Beginning algebra students ordinarily learn how 
to factor quadratic trinomials before learning 
about the characteristics of quadratic functions. 
They first learn the mechanics of factoring, after 
which they learn to solve quadratic equations by 

Table 3  Finding Zeros of the Functions 

Algebraically 

f(x) = 6x2
 + 5x – 4 g(x) = x2

 + 5x – 24

     0 = 6x2 + 5x – 4
      = (3x + 4)(2x – 1)

      0 = x2 + 5x – 24
     = (x + 8)(x – 3)

x = –4/3 or x = 1/2 x = –8 or x = 3

Fig. 1  Graphs show zeros of the primary function f(x) and of the secondary  
function g(x).
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factoring or by using the quadratic formula. Only 
later are they asked to apply these techniques to 
find the zeros of quadratic functions. As a result, 
students may not make the connection between 
factors and zeros until long after they have mas-
tered the art of factoring. Those who are able 
to connect the dots between factors and zeros, 
however, understand that those two concepts are 
closely related.

Unable to make the connection between factors 
of two associated polynomial expressions algebra-
ically, I turned my attention to the related polyno-
mial functions f(x) and g(x) and their graphs. This 
was a game changer. What follows is an account 
of how I was able to compare the two functions 
graphically, numerically, and algebraically and 
begin to make sense of why the slip-slide method of 
factoring works.

THE INVESTIGATION
The trinomial I wanted to factor, the primary qua-
dratic, was 6x2 + 5x – 4, so I created a related pri-
mary polynomial function, f(x) = 6x2 + 5x – 4, and 
graphed it using GeoGebra. Then I took the second-
ary polynomial, x2 + 5x – 24, and created a related 
secondary function, g(x) = x2 + 5x – 24, adding its 
graph to the same GeoGebra sketch.

The graphs of the two polynomial functions 
were what you would expect. The primary 
function, f(x), had a more narrow shape than 
g(x) because of its greater leading coefficient. 
The secondary polynomial function, g(x), was 
much lower on the graph than the first, given its 
smaller constant term. Both parabolas opened 
upward because the leading coefficients were 
positive.

A look at the graphs of the two functions also 
revealed that the zeros of f(x) were relatively close 
to the origin, whereas the zeros of g(x) were  
significantly farther from the origin. I first used  

GeoGebra to find the zeros (see fig. 1) and then 
found them algebraically, as shown in table 3. If 
you look carefully at the two pairs of zeros, you 
may notice a relationship between them.

I did not immediately see a relationship between 
the two pairs of zeros and decided to investigate 
the vertices of the two parabolas as well. From the 
graph, it appeared that the vertex of f(x) was much 
closer to the origin than the vertex of g(x), and the 
calculations confirmed this. The algebraic process 
of finding the vertex coordinates of the two parabo-
las is shown in table 4.

I could not help but notice that the coordinates 
of the vertices of the two functions were remark-
ably similar. Both ordered pairs had the same 
numerators, and the denominators of Vf were six 
times as large as the corresponding denominators 
of Vg.

That ratio of 6 : 1 caught my eye, since the ratio 
of the leading coefficients of the two functions, f(x) 
and g(x), was also 6 : 1. I decided to take another 
look at the zeros of the two functions to see how 
they compared. My hunch was that the zeros of 
g(x) were six times greater than the zeros of f(x), 
since that was the case with the vertices. Table 5 
summarizes my findings.

Now that my hunch had been confirmed, I 
excitedly began to look at other polynomials to 
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see whether the same relationships held. I went 
through the identical process with several other 
quadratic trinomials, one of which is shown in 
table 6.

A quick calculation showed that the ratio 
between corresponding zeros of the two func-
tions was 3 : 1 and that the ratio of corresponding 
vertex coordinates was the same. This 3 : 1 ratio 
was also the ratio of the leading coefficients of the 
primary and secondary functions! For each addi-
tional trinomial that I investigated, the relation-
ship between pairs of zeros and vertex coordinates 
of the two functions was the same. On the basis 
of these observations, I formulated the following 
hypothesis:

 The coordinates of the zeros and vertex of g(x) 
are a constant multiple of the coordinates of the 
corresponding zeros and vertex of f(x), and the 
value of the constant multiple is the same as the 
original leading coefficient of f(x). 

Armed with this working hypothesis, I went 
back and used a generalized analytical approach 
to verify the relationship for all such pairs of qua-
dratic functions. Table 7 shows the zeros of f(x), 
labeled z1 and z2, and the zeros of g(x), labeled z3 
and z4. If you compare the larger zero of each pair 
(e.g., z1 and z3 when a is positive), you will see that 
they differ only by a factor of a. The same holds for 
the smaller zero of each pair (e.g., z2 and z4). This 
relationship leads us to the following conclusion 
about the zeros of the primary and secondary poly-
nomial functions:

 The zeros of g(x) are multiples of the zeros of 
f(x) by a factor of a.

The vertex coordinates of the two functions are 
also related by a factor of a, the leading coefficient 
of the primary function. Table 7 summarizes the 
process of finding vertices of each function.

The relationship between the pairs of zeros 
of the two functions is the cornerstone of the 
slip-slide method. We can use the multiple a to 
our advantage when we are factoring a quadratic 
whose leading coefficient is an integer greater than 
1. Transforming quadratic functions rather than 
merely manipulating quadratic expressions allows 
us to factor quadratics graphically—this is transfor-
mational factoring.

TRANSFORMATIONAL FACTORING
Using polynomial functions and their zeros to  
produce corresponding binomial factors is at the 
heart of transformational factoring. The steps of 
transformational factoring may remind you of  

Table 7  Zeros and Vertices of the Related Functions

Trinomial ax2 + bx + c x2 + bx + ac

Function f(x) = ax2 + bx + c g(x) = x2 + bx + ac

Zeros

z
b b ac

a

z
b b ac

a

z
b b ac

z
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= − + −
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= − − −
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= − + −
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Table 6  Another Example: Comparison of Factors, Zeros, and 

Vertices 

Primary Secondary

Trinomial 3x2 + 14x + 8 x2 + 14x + 24

Function f(x) = 3x2 + 14x + 8 g(x) = x2 + 14x + 24

Factors (3x + 2)(x + 4) (x + 2)(x + 12)

Zeros x = –2/3, x = –4 x = –2, x = –12

Vertex (–7/3, –25/3) (–7, –25)

Fig. 2  Points F and G on ray OE have coordinates with a 2 : 1 ratio.
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slip-slide factoring, but the method is rooted in 
graphical representations. The slip-slide method 
is an efficient routine that produces the desired 
factors, but the steps in the routine are not math-
ematically equivalent to one another. Unlike verify-
ing a trigonometric identity, in which each step is 
equivalent to the preceding step, the slip-slide steps 

shown earlier in table 2 are not equivalent. Thus, 
they do not constitute a proof that the product of 
final pair of binomials is equivalent to the original 
trinomial. Only when the functional approach is 
used does the method have meaning, leading us to 
factoring by transformation, the steps of which are 
shown in table 8. At the heart of transformational 

Table 8  Factoring a Quadratic Trinomial by Transformation

Step ax2
+ bx + c 2x2

– x – 15

1 Create the primary function f(x) = ax2+ bx + c. f(x) = 2x2– x – 15

2 Transform f(x) into a secondary function, g(x), where g(x) = x2+ bx + ac. g(x) = x2– x – 30

3 Factor g(x). g(x) = (x – 6)( x + 5)

4 Use the factors of g(x) to find its zeros, z3 and z4. g(x) zeros: z3 = 6; z4 = –5 

5 The zeros of g(x) are multiples of the zeros of f(x) by a factor of a; so divide the 
zeros of g(x) by a to obtain the zeros of f(x), z1 and z2. Simplify if possible.

a = 2
f(x) zeros: z1 = 6/2 = 3; z2 = –5/2 

6 Knowing the zeros of f(x), create a pair of factors of the form (x – z1)(x – z2). (x – 3)(x + 5/2)

7 This product differs from the original trinomial by a factor of a, so multiply the 
product by a to obtain the factored form of f(x).

f(x) = 2 • (x – 3)(x + 5/2)
f(x) = (x – 3)(2x + 5)

8 The two binomials are the factors of the original trinomial, ax2+ bx + c. (x – 3)(2x + 5)
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factoring is a dilation of one polynomial function to 
obtain a second related polynomial function.

The graphs of f(x) and g(x) shown in figure 

2 confirm the results of table 8 and serve as a 
reminder of the relationship between the primary 
and secondary functions. Notice again the dilation 
transformation that occurs when the leading coeffi-
cient of the primary function, f(x), is used to create 
the secondary function, g(x).

This dilation transformation with respect to the 
origin has a scale factor equal to the value of the 
leading coefficient a. It can be shown algebraically 
that every point on the graph of f(x) corresponds to 
a point on the graph of g(x), with the distance from 
the origin to that point on g(x) equal to a times the 
distance from the origin to the corresponding point 
on f(x). Figure 2 shows two such points, F and 
G, on f(x) and g(x), respectively. Notice how the 
coordinates of point G are twice the coordinates of 
point F. Both points lie on ray OE.

A NEW PERSPECTIVE
I frequently remind my student teachers that now 
is a great time to be a mathematics teacher. Tools 
that we now take for granted make it possible to 
investigate relationships visually, opening the door 
to new discoveries and new ways of looking at old 

ideas. The slip-slide method of factoring evolves 
into transformational factoring, a new and justifi-
able form of factoring graphically, thanks to our 
ability now to look at a long-standing problem from 
a new perspective.
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